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Experimental and theoretical study of adiabatic, intermediate, and isothermal oscillations in air
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We have used an electronic technique incRardt’'s experiment to obtain accurate measurements of oscil-
lations in air confined to a finite volume at room temperature and pressure. The dimensions of the container are
small compared to the wavelength of sound for the frequencies(0sgdo 8 H2. The nature of the oscilla-
tions depends on both frequency and amplitude. Below about 2 Hz, the oscillations undergo several changes as
their amplitude decreases due to dampitig:an initial adiabatic oscillation is followed b§ii) a transition
(lasting one or two cyclggo intermediate oscillations which persist for several cycles, until the amplitude has
decreased to a few mm, when there(ii§) a second, larger transitioflasting two or three cycleso (iv)
isothermal oscillations which persist until the motion ceases. Above 2 Hz we cannot distinguish the initial
adiabatic oscillation, and the oscillations are all of the same intermediate type. A theoretical model is presented
for the effects of heat conduction on the bulk modulus of the gas and the relaxation time of the initial
intermediate oscillations, and these are compared with measured @0663-651X97)08009-4

PACS numbg(s): 51.30:+i, 03.40—t, 05.60:+w

[. INTRODUCTION guency. That is, a competition between the rate at which heat
is transported by the wave and the rate of diffusion of heat by
The work reported here is an experimental and theoreticatonduction. At low frequencies the former effect dominates
study of various oscillations, and the associated heat flow&ind the vibrations are adiabatic; at sufficiently high frequen-
in a gas(air) which is confined in a finite volume. It has been cies the opposite is true and the vibrations are isothermal
known for almost two centuries that the physical phenomen&2,4]. Here low and high frequency means small or large
associated with oscillations in a gas depend on the nature gompared with a characteristic frequency
the heat flows(even in an infinite mediuin In fact, this 2
feature was encountered earlier, at the dawn of Newtonian fe=cal2m, @
physics: in the second edition of tiRgincipia, Newton com- where
pared his calculated value of the speed of sound in air with
the measured value and found a discrepancy of almost 17% k=\pC, 2
[1]. Subsequently it emerged from the work of Lagrange,
Laplace, Poisson, and others, that Newton’s value applies 8 the thermal diffusivity[2]. (A and p denote the thermal
isothermal vibrations where the temperature of the gas isonductivity and the equilibrium density of the ga&or
maintained at a constant value by thermal conduction withirgases under standard conditions the frequémgis high, for
the gas, whereas sound vibrations in air are adiabatic, witexample, for airf .~10° Hz.

no internal heat transf¢2]. The relation between the veloci- Stokes also considered the effect of heat transfer on the
ties in these two limits was shown to bg= \/yc; whereyis  attenuation of sound waves, and found that adiabatic and
the usual ratio of specific heats of the gas C,/C, . isothermal waves would propagate with little attenuation,

Attention soon turned to some general questions concerrwhereas waves between these extremes would be strongly
ing this phenomenon, such as, under what conditions do theamped[3]. These conclusions are essentially correct, at
limiting adiabatic and isothermal oscillations obtain, andleast if viscous contributions are negligible; the latter may
what are the properties of the oscillations between these exontribute significantly at frequencies abaie[2,5].
tremes? For example, in 1851 Stokes published a study in In the above, no account is taken of the influence of
which he supposed that the heat transfer is due to radiatiomoundaries to the medium on the dynamics of the gas. Such
rather than conduction. He concluded that sound waves dfffects can be of considerable importance in, for example,
sufficiently low frequency in a gas would travel isothermally the flow of fluids in pipes, and the occurrence and properties
whereas waves of high frequency would propagate adiabatdf adiabatic, isentropic, and isothermal flows have been ex-
cally [3]. It was later recognized that the heat flow is pre-haustively studied6], and will not be referred to again in
dominantly conductive, and it was shown that, at least for arthis paper. For the oscillations of confined gases the effect of
unbounded medium, Stokes’ conclusion is incorrect: soundhe walls has also been considered, for example, to determine
waves of low frequency are adiabatic and become isothermdhe corrections that must be applied to measurements of the
only at very high frequenc2]. This results from two com- velocity of sound and the ratio of specific heat§7]. Larger
peting influences(i) the time available for heat flow between effects are known for sound waves in porous materials where
neighboring regions of compression and rarefaction in thehe oscillations can become isothermal if the pores are suffi-
wave increases as the frequency decreases(iBuhe scale ciently small[8]. The essential physics of these effects is the
for the distance that this heat has to be conducted is set Hgllowing. Suppose that an oscillation in the volume of the
the wavelength, and this increases with decreasing fregas is induced by an oscillation ijpart of) the wall of the
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container.(This is made more specific later in the paper. where A is the cross-sectional area of the tube. For small
Consider that the frequency of the oscillation, or the volumeoscillations
of the container, or both, are sufficiently low that the wave-
length is much greater than the dimensions of the container. AP,=—KAV/V, (4)
(For example, the wavelengttf a 1 Hz vibration exceeds . . I
the dimensions of a typical container,0.01—1 m, by more whereK is the bulk mod_ulus of the gaV, is its nghbnum
than two orders of magnitudeif the oscillation of the gas is VOIUmMe, andAV=Ax. It is assumed that the frictional force
purely adiabatic then the temperature of the gas will oscillatdS Proportional to the speed of the ball
uniformly about its ambient value. But, due to the finite ther- :
mal conductivities of the gas and the walls, and because the Fa=—BX ®
length scale for thermal conduction is now set by the dimen- : . .
sions of the container, there will be superimposed on thi%Nhe.reﬁ 'S a constant. '_I'hen the equation of motion for small
: . S . .~ “oscillations of the ball is
adiabatic temperature oscillation a nonuniform, time-
dependent contributiofsee Sec. Y. For the initial depar-
ture from an adiabatic oscillation, the effect of heat conduc-
tion on certain physical properties, such as the bulk mOdm“%onsequently
and measurements of, is also small. In the extreme case
where the adiabatic temperature variation is nullified by ther- x(t)=Xe Y7cos2mt/T, 7
mal conduction into and out of the walls, the oscillation is
isothermal. We refer to oscillations which are not at the adiawhereX is the initial displacement,
batic or isothermal extremes, as intermediate.
There are a number of questions one may ask here, and T=m/2p3 (8)
these are the motivation for our worl) What is a suitable
experimental procedure for detecting the expected transitiori§ the relaxation time, and
from adiabatic to intermediate to isothermal oscillations in a
confined gas?ii) Apart from obvious physical variables
such as the frequency, volume and thermal conductivities, on
what additional variables do the transitions depend? For ex-
ample, how does the amplitude of the oscillation affect thes the period of the oscillatior{In our work the damping is
transitions?(iii) What changes in dissipation occur during sufficiently weak that the difference in period between the
these transitions@v) Can one, with the aid of a theoretical damped and undamped oscillations is negligible, see below.
model, identify the contributions of heat flow to the bulk |n the usual application of this experiment it is assumed that
modulus and the total dissipation? the gas is perfect and the oscillations are adiabatic. Then
In Sec. Il we describe how modification of a well-known K = 4P, whereP is the equilibrium pressure of the gas. The
experiment provides a simple experimental procedure for anperiod T is measured as the average of a number of cycles,
swering these questions. The results of our experiments ofnd Eq.(9) is used to obtainy [9—11].

air are presented and discussed in Sec. Ill. In Sec. IV a |t is clear that Ruhardt's experiment provides a means
theoretical model is described for the effect of heat conducfor monitoring both the bulk modulus of the gas and the total
tion on the bulk modulus of the gas and the relaxation timeelaxation time during the oscillations, from accurate mea-
of the OSC|”at|OnS, and the results of the model are Comparegurements Of((t) These two observations allow one to de-

mx+ Bx+ (KAZ/V)x=0. (6)

1/2
47°mV

KA?

€)

with measured values. termine whether the nature of the oscillation is changing, and
to detect any accompanying change in dissipation. For ex-
Il. EXPERIMENTAL PROCEDURE ample, for isothermal oscillations of a perfect ods; P and

_ _ _ _ the period(9) is a factor\/y greater than the adiabatic value;
The experiment which suits our purposes is the wellfor air (y = 1.40 this is about an 18% increase, and it
known experiment Rehardt[9] used in 1929 to measure the should therefore be readily measurable by an electronic tech-
ratio of specific heats of gases and which has since becomerggue. The use of such a technique to measut is our

standard teaching experiment. The apparatus consists of Bain modification of Raohardt's experiment and we now
glass aspirator with a stopper through which passes groceed to describe it.
precision-made glass tube. A closely fitting smooth steel ball - A plock diagram of the apparatus is shown in Figa)l
is placed in the tube. If the ball is displaced from its equil-Here L1 and L2 represent coilthe excitation coilswhich
brium position and released, it performs a weakly dampedare wound in opposite senses, but are otherwise identical.
simple harmonic motion. By measuring the period of thisThey are mounted coaxially with the glass tube. A third coil,
motion a value ofy can be obtainef9]. L3 (the pick-up coi), also mounted coaxially, is positioned
It will be useful for what follows to b”eﬂy recall the m|dway between L1 and L2. The excitation COiIS are con-
theory of this experiment. Let denote the mass of the ball, nected across a variable-frequency ac power supply as shown
x the displacement of the ball from its equilibrium position, in Fig. 1(b). The oscillating magnetic field produced by the
andA P, the corresponding change in the pressure of the gasxcitation coils is zero in the median plane of L3, and is
The restoring force on the ball is proportional to the coordinate for small values ofx. The
pick-up coil is connected to a lock-in amplifigphase-
F,=AAP,, 3 sensitive detectofPSD | which is used as the detector. The
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»®

This facility is required to compensate for small errors which
might occur in positioning the pick-up coil L3 midway be-

«— glass tube

corr 11| CO— tween coils L1 and L2. Typically® was set close to its
center. Specifications of the various electrical and mechani-
B R o cal components used in our experiment are given in the ap-
pendix.
_ corw 27| |3 We wish to study the oscillations of the gas at various
f;gﬁjl frequencies, and according to E@) this can be done by

varying the volume of ga¥. A simple method of doing this
is to partially fill the aspirator with a liquifil2]. The volume
of gas isV=Vy,—V_, whereV, is the volume when the
OSCILLATOR aspirator is empty an¥| is the volume of liquid. Then Eq.
(9) can be written

PHASE SENSITIVE | reference
DETECTOR signal

signal
output

) 47°m
OSCILLOSCOPE XY PLOTTER 1' —

 KA?

(Vo—V0). (10

(a) Thus for oscillations of a given type, a plot &f versusV,
should yield a straight line with slope 47°m/KA? and in-
terceptV,, whereK is the bulk modulus for these oscilla-
P tions. This technique has been used to measum air,
W using water as a filler and assuming the oscillations are adia-
batic[12].
ém L2 J In our work, we have used both vacuum pump(aihich
c4 C) E =Lc has a very low saturated vapor pressdi® P9 and water as
the fillers. Measurements could be taken for volumes be-
tween about 0.13 and 22.96" (=V,); the corresponding
frequencies vary between about 8 and 0.5 Hz. Amplitudes of
- the displacement varied between 5 and about 0.01 cm; the
corresponding fractional changes in volume varied from
(b) about 8<10 2 to 2x10 * at the higher frequencies and
from about 4<10 # to 10 ® at the lower frequencies.
) o _ _ In these experiments it is essential that the ball and the
~ FIG. 1. (& Block diagram of the circuit for measuring the posi- e are clean, and that there are no leaks in the system. To
tIO!’] x(t) of the stggl bgll. The origin of is in the medlan. plane of avoid leaks we used a stopper made from Polyacetyl in the
coll L.3. The specification ar_1d pa_rameters for the e_lect_rlcal and meéspirator, with an O-ring seal between the stopper and the
chanical components are given in the Appendoy.Circuit for the  y \he * The air used in our measurements was synthetic/
excitation coils L1 and L2 showing the two LC loops and the po- . . . e . .
tentiometerp. medical grade having the following specifications:; O
21+ 2%; balance B, C,H,, and HO<4 ppm.

output from the PSD is displayed on a digital oscilloscope
and recorded on aKY plotter.

The PSD was nulled with the steel ball at 0. With the ball ~ We first consider the results obtained using vacuum pump
at a positionx, a dc output is produced by the PSD. This oil as the filler in the aspirator. In Figs(&@ and 2Zb) we
output has two characteristicg) Its polarity is determined present a typical oscilloscope trace for the oscillations of a
by the phase setting of the PSD and the sense of the ball'small volume of gas (=0.71). The initial amplitude
displacement(ii) It is proportional tox if |x|<5 cm, and (measured from the center of the ballas nearly 4 cm. We
becomes nonlinear, rising rapidly above the linear value, ihave, for clarity, displayed the tail of the oscillation sepa-
[x|>5 cm. The output in the linear region was calibrated byrately in Fig. Zb) where the time scale is half that of Fig.
measuring the position of the ball as a function of the PSC2(a).
output. This method of detecting the position of the ball is  Similarly, in Figs. 3a) and 3b), a typical trace is shown
analogous to the operation of a linear-voltage-displacemerfor the oscillations of a larger volume of ga¥€13.2Y").
transducer(The position of any small conducting object in- Note that in Fig. 8) the displacements in the tail have been
side the tube can be measured by this method. magnified tenfold. The periods of each of the cycles shown

To achieve maximum sensitivity, the frequentyf the in Figs. 2 and 3 were measured with the aid of the
oscillator was set to the resonant frequency of the two LC* x-enlargement” facility for the horizontal axis of the digi-
loops shown in Fig. (b). Large branch currents flow through tal oscilloscope, to display just one or two cycles on the
the excitation coils whilst maintaining a low feed current screen. Then, by activating the “period calculation” feature
from the oscillator. Throughout this work=32.6 kHz. The of the oscilloscope, the periods of individual cycles were
component represents a 100 wire-wound potentiometer determined accurately, either from peak-to-peak measure-
which was used as a coarse adjustment in phasing the PSBents or from intercept measurements on the time axis.

Ill. RESULTS
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FIG. 2. (a) Oscilloscope trace for the positionof the steel ball © )
versust, for a volume of a_liltO.71 / The first sixteen cycles are FIG. 3. (a) As for Fig. 2a), but for a volume of ai=9.75/. The
shown.(b) As for (a), but with the time scale halved. Cycles 17—-24 first eight cycles are showib) As for (a). Cycles 916 are shown.
are shown. The vertical scale has been magnified tenfold.

Some examples taken from Fig. 3 are shown in Fig. 4. The 50 s.(In fact, this plateau persists until the oscillations
first two cycles of Fig. @) are shown in Fig. @) and the cease.

third cycle and the first part of the fourth cycle of FighB The ratio of the largest to the smallest periods is 1.50/1.25
are depicted in Fig. @). =1.20.

The results of measurements such as these are shown in In Fig. 5 we have displayed just two sets of results for two
Fig. 5 where the period of a cycle is plotted against the different volumes of air. The results of a detailed study in-
numberN of the cycle. The set of points labeléd) are from  volving numerous measurements at other volumes show the
Figs. 4a) and 2b); the points labeledb) are from Figs. &) following.
and 3b). It is clear that the two sets differ considerably. The (i) When the volume of ga¥=V,—V, is less than about
periods of the higher frequency oscillation are essentially2/, corresponding t@<0.5 s, the measured valuesTfre
constant,T=0.300 s(to within the resolution of the oscillo- of the type(a) in Fig. 5, with very little variation inT. (Ac-
scope,~2 ms9 for all 22 cycles. By contrast, the plot for the tually, for V slightly below 27, a small increase i is
oscillation with the longer period shows four distinct fea- noticeable in the tail.
tures, marked 1-1V, in Fig. 5: (i) For T=0.5 s, the measured values are of the tiipe

I. The first cycle has the lowest periofl,=1.25 s. This in Fig. 5, except that the “lip” | could be reliably discerned
increases slightly in the next two cycles to 1.26 and theronly whenV=6/, corresponding td=0.9 s.(It is not clear
1.27 s. whether this “lip” is absent at the higher frequencies or is

[I. This is followed by a plateau of 4 cycles &,=1.27 S.  not detected because of insufficient resolution in our mea-

[ll. At the end of the sixth or seventh cycle there is a rapidsurements off for T<0.9 s) The number of oscillations in
change, taking approximately three cycles, to a second plahe plateau Il decreased as the volume of gas was increased,
teau. from 14 at the smallest volume to 4 at the larger volumes.

IV. The second plateau consists of five cyclesTat (iii) The measured values can be accurately reproduced.
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FIG. 5. The measured periddof a cycle versus the numba¥
of that cycle. The set of points labeléa) were obtained from Figs.
2(a) and 2Zb) as described in the text. The set of points labél®d
were obtained from Figs.(8 and 3b).

axis and the slopes obtained from these straight lines are
listed in Table I. Note that the values ®f, given by the
intercepts are all close to the measured volume of the empty
aspirator plus the volume of the tube up to the equilibrium
position of the ball,Vy=22.967. The equilibrium pressure

x(t) (mm)
o
]

4 [ L | L L ' L dard equation of statgl 3]

12.8 133 13.8 14.3 14.8 153
(b) 1(s)

FIG. 4. (a) Enlargement of the first two cycles of Fig(a3
obtained using the X-enlargement” facility of the oscilloscope.
The measured peak-to-peak period is 1.2®sEnlargement of the

third cycle and part of the fourth cycle of Fig(t8. The measured whereV is the molar volume. and

peak-to-peak period is 1.50 s.

Next, we consider a possible interpretation of results such
as those shown in Fig. 5. The rafio/T,= 1.2 of the longest
to the shortest periods in the pldd) is close to the value for
air of /y=1.18, which is just the expected ratio of the peri-
ods of isothermal and adiabatic oscillatiqsse Sec.)l This
suggests the hypothesis that the first cycl¢binis adiabatic
and the cycles in the plateau IV are isothermal: the other
oscillations are then presumed to be intermediate between
these extremes. The oscillations(a are shown in Sec. IV
to be intermediate.

To test these ideas we have extracted from plots such as
Fig. 5 the values oT,, T;, andT,, for a range of values of
V between 22.96 (=V,, the equilibrium volume of gas
when the aspirator is emptyand V=0.137 (the smallest
volume for which a reliable trace could be obtainethen,
following the discussion in Sec. |, we have plott&g, T2,

—q | } } —— of the gas during these measurements Was95263 Pa,
\/ \ being the sum of the atmospheric pressure 94459 Pa and the
B T 7 pressureng/A=804 Pa due to the ball. Also listed in Table
, i | are values of the bulk moduli divided by the pressiré
“I T deduced from the measured slopEE/dV, with the aid of
Eqg. (10) and using the parameters in the Appendix.
Theoretical values dk/P can be obtained using the stan-

11

T (s%)

3 Intermediate

' 4= Isothermal

. 7

Adiabatic

VL@

24

FIG. 6. The squares of the periodg, T,,, andT; versus the

andTg, versus the volume of OW]_:V(_)_V- These P'Qts areé  yolume of oil vV, in the aspirator. The values df,, T, and T,
shown in Fig. 6, where the straight lines were obtained by avere obtained from plots such as Fig. 5. The straight lines are

least-mean-squares fit to the data. The intercepts oiVthe least-mean-squares fits to the data.
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TABLE I. Values of the intercepts and slopes obtained from the 6
least-mean-squares fits in Fig. 6. Values of the bulk moduli were
obtained from the slopes using E40) and the parameters given in
the Appendix.P=95263 Pa. The theoretical valueskf/P, K; /P . 0 022
andK,,/P, were obtained from Egg13), (14), (37), and (40) as - 41 e g
described in the text. =2 0025
ZJE S
Experiment Theory 2t 85
2
Vo(/) S\T/i (/Y Ka/P Ka/P
0 1 L L 1 L L i 1 1
22.96 —0.1209+0.005 1.395:0.006 1.400 0 0.4 0.8 1.2 1.6 2.0
5 T(s)
dv, FIG. 7. The relaxation time for intermediate oscillations versus
the periodT. The measured values were obtained as described in
22.87 —0.1727-0.001 0.976:0.007 1.000 the text. The solid curve is given by E@1) with B=12s"16 and
C=22"78
Vo() _fzn(sz/—l) Km/P K /P
dvi smaller thanr,,, varying between-0.5 and 0.8,,. Values
22 95 01244+ 0.008 1,355 0.008 1.386 Qf 7 in the isothermal tail tended to be longer tljam, some-
times by as much as a factor 2. It is not feasible to obtain a
meaningful value ofr for the initial adiabatic oscillation
[such as the first oscillation in Fig(8].
7=1+ i_T) (12) The preceding results were obtained using vacuum pump
\Y oil to vary the volume of air in the aspirator. It is also inter-
esting to use water for this purpose. A plot of the various
is the compressibility factor. Then measured periods versus the volume of water is shown in
Fig. 8, and values of the intercepts and slopes are given in
Ki/P=Z. (13)  Table IIl. To analyze these results we suppose that the satu-

_ _ o rated vapor pressure of the water makes no contribution to
Also, the adiabatic bulk modulus is given by the thermody-the bulk modulus of air. Then the equilibrium pressure to be

namic identity[14] K,= yK; and so used in evaluating the various bulk moduli is the atmospheric
pressure 94259 Pa, minus the saturated vapor pressure of
Kal/P=vyZ. (14)  water 2064 Pa at 18 °C, plus the pressure 804 Pa due to the

] » ) ball. We also suppose that heat released by condensation of
For air under the conditions of our experimept=1.40.  some vapor during the compression part of a cycle is ab-
Also, the termB/V in Eg. (12) is of order[13] —0.02%, sorbed at the liquid-vapor interface and does not affect the
which is too small to be measured in our experiment: conseeompression of the gas. Similarly during the expansion part
quently for the entries in the last column of Table | we haveof a cycle.(Any latent heat absorbed by the air would in-
takenZ=1 in Eqgs.(13) and(14). We see that the theoretical crease the temperature changes of the adiabatic oscillations;
and experimental values &f,/P are in good agreement. For one can readily show that such enhancement cannot exceed
K;/P the measured value in Table | is 2.4% below the the-
oretical value 1.000. The reason for this small discrepancy is 4
not clear. The theoretical value &f,,/P in Table | is dis- -
cussed in the next section.

We have also determined the relaxation timg of the )

. . . . . Intermediate
intermediate oscillations, such as those in the plateau Il of 3k 4 S\e_ = Isothermal S
Fig. 5[i.e., the third to seventh cycles in Figa| by taking
the ratio of successive amplitudes and using &t. For 7
volumes of air below 2°, where all the oscillations are in- 21 adisbatic .
termediate, we have used ratios from traces such as f@yg. 2 <
(We remark that if amplitudes larger than about 5 cm are
used then the nonlinearity in the method for measurift) 1 ¢ .
(see Sec. )lleads to large errors in the measured relaxation
time) The results are shown in Fig. 7, wherg is plotted
against the measured periddof the oscillations. The solid 0
curve in Fig. 7 is discussed in the next section. We have
attempted to obtain values of in the transition region ||
and in the isothermal tail IV of Fig. 5, but these showed FIG. 8. As for Fig. 6 but with water used to vary the volume of
considerable variability. Values af in the transition Il are air in the aspirator.

T2 (89

Vi@
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TABLE II. As for Table | but with water instead of vacuum gas, and(ii) heat flows in the gas. Because the dimensions

pump oil in the aspirator?=92999 Pa. of our container are small compared to the wavelength of
sound at the frequencies we uSec. ), viscous damping in
Experiment Theory  the bulk of the gas will be small. Also, it is helpful to start by
) dT2 considering an idealized experiment in which there is no
Vo(£) v (7Y KalP KalP friction in the tube. Then the only dissipation is due to ther-
L mal conduction in the gas. Consequently, if the oscillations
22.84 —0.1234+0.0004 1.406:0.005 1.398 are adiabatic, the damping force is zero, and in(Egr= =,
so that
2
Vo(7) (7 Ki/P Ki/P X(t)=Xcog 27t/T). (15)
L
23.10 —0.1795+0.0014 0.962 0.008 1.000 Due to the finite thermal conductivity of the gas and the
container, the oscillations cannot be perfectly adiabatic, and
. dT we ask how the heat flows alter the bulk modu(tig) and
Vo(4) d—V':(sz/’l) Km/P Km/P the relaxation timer.

Our analysis follows closely that of Clark and K4t5]

22.84 —0.12910.0005 1.33%0.005 1.386 who estimated the corrections that must be made for nona-
diabatic compressions in a resonance method for determining
the ratio of specific heats of a gas. The experiment to which
20%) Values of the bulk moduli divided by, obtained they applied their results differs from ours: they consider a
from the measured slopes and Et0), are listed in Table I, driven oscillator(a piston in a horizontal tube with a gas on
together with the corresponding theoretical values for isoboth sides of the piston contributing to the restoring force
thermal and adiabatic oscillations obtained from E(@S) and study the resonance curve. For this reason, and also to
and (14) with Z=1. For y we have used2] y=(7+h)/(5+ correct certain errors in their calculations, it is helpful to
h), whereh (the fraction of molecules that are,8) is 0.022  Present a brief outline of their analysis.

for a saturated vapor at 18 °C. Again there is good agreement We start by writing the temperature of the gad 25|
between the experimental and theoretical valueK ofP, _

while the measured value &f; /P is again a little lower than 6= 0p=(MC,) 'PAV+p(r,1), (16)

the theoretical value. The theoretical valuekgf/P in Table where 6, is the ambient temperaturb] is the mass of gas,

II'is discussed below. . L
We made a separate set of measurements to check ttigdP is the equilibrium pressure of the gas. The unknown

value ofK; /P and the assumed lack of effect of the saturate unction 6p , Whlc.h represents the departure from the tem-

vapor pressure of water. With dry air at a presgare95263 erature of an adiabatic oscillation, must satistg]

Pa in an empty aspirator we obtained for an average of 80 90 19t=yKkV26p (17)

measurementd;=2.000 s. With saturated water vapor at

23.5°C in the aspiratofpartial pressure of air92454 Pa  wherex is the thermal diffusivity of the gal&]. [In arriving

the average wag;=2.028 s. The ratio 1.014 of these periods at Egs.(16) and(17) it is assumed that changes in the pres-

is in excellent agreement with the square root of the inverseure, density, thermal conductivity, and specific heat of the

ratio of the pressures (95263/92484y 1.015, as required gas from their equilibrium values may be neglected.

by Eqg. (9) with K;~P. Also, the values oK, /P calculated To solve Eq.(17) one considers a spherical container of

from Eq.(9) (and usingV=22.96¢" and the data in the Ap- radiusR. The temperature of the gas is assumed to be spheri-

pendix are 0.965 for dry air and 0.970 for air plus saturatedcally symmetric, so thafi,= 65 (r,t). It is assumed that the

water vapor, in good agreement with the values in Tables femperature of the gas close to the wall is equadgpand

and Il. that the temperature at the center of the sphere is finite: then
The results shown in Figs. 2—-8 are for an initial displace-the boundary conditions are

ment of 4 cm. We have also made measurements with

smaller initial displacements, down to 0.5 cm. In all cases an Op=(M C,,)*lPAV atr=R (18

isothermal “tail” was present in the plot of(t) versust. g
an

IV. THEORETICAL MODEL 0p finite atr=0. (19

We present a model for the effects of heat flow within thea solution to Eq.(17) which satisfies Eq(19) is
gas on the bulk modulus of the gas and the relaxation time of
the oscillations. This model is intended to apply only to the D .. ta
initial departure from adiabatic oscillations; that is, to inter-  fp=""[€""codbt+r/a+v)—e "cogbt—r/a+ )],
mediate oscillations with constant period, such as those in (20)
the plateau Il in Fig. 5.
Consider first the damping ford8). In general, there will  whereD, a, b, and» are constants, and
be contributions to this force frorfi) friction due to motion
of the ball in the tube(ii) viscous effects in the bulk of the b=2y«l/a?. (21
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The boundary conditiorfil8) with AV=Ax andx given by
Eq. (15) requires
(i) b=2#lT.
It is helpful to digress here: from Eq&1) and (22) the
length scalea is given by

(22

a=(y«Tlm)2 (23
It turns out that in our experiment
a<R (29

[see Eq.(44)], and consequently in requiring that E@O)
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Substituting Eq(32) in Eq. (33) and using the relation

whereK, is the adiabatic bulk modulus, we find that

=(7V)71Kav

(aP
r}

N

satisfy Eq.(18) we may neglect terms of order unity and of and

ordere”R'2 in comparison withe®’. Then
(i) cosr=coR/a, (25
sinv=—sinR/a, (26)
and
D=(PAXRMC,)e Ra (27

The average value diy in the sphere is given by

R R
9D=(477R3/3)_1J Opamradr. (28
0

Substituting Eq(20) in Eqg. (28) and using Eqs(24)—(27),
we find

6p~(3PAXI2MC,)(a/R)[ cog 2t/ T)+sin(2at/T)].
(29

[Note that 6 lags x(t) by 45°] Using Eq.(15), the last
parenthesis in Eq29) can be expressed in termsxfndx.
It is also helpful to use the thermodynamic relat[db]

--ame ||
P=(y—1MC,| R

3 (a?)
90—5(7— DA N P(a/R)

From Egs.(16), (30), and(31) the departure of the tempera-
ture of the gas from the ambient valdg, averaged over the
volume of the sphere, is

7=-tr-vn{
AG=—(y=DA| 5 i

(30

Then

T.
X—EX). (31

3a

1 3aT
2R

Xt 1R

. (32

The total pressure change associated with a temperature

and volume change is
P — (0P
a6 v

AP=
|-

(33

AP=AP+AP;. (34)
Here
ap——[1-307 D3y uv 35
=T r [Ka (395
3(y—1)K,AaT.
Ap*:_u (36)

47yVR

Equations(35) and (36) are the desired results which we
wish to apply to our experiment: similar results were first
obtained by Clark and Katfl5]. From Eg.(35) the bulk
modulus for intermediate oscillations is

3(y—1a
2vR

K. (37)

Also, the damping force associated with heat conduction is
AAP;=— B.x. Hence we obtain from Eq36)

_3(y— 1)K A%aT

¢ 47yVR (38

So far we have neglected friction due to motion of the ball in
the tube. We assume that this force has the formByx,
whereg, is a constant. Then the total damping force is given
by Eg. (5) with 8= By+ B, and the relaxation timés) for
intermediate oscillations is

Tm=M/2(Bo+ Bc)-

To compare Eqs37)—(39) with experiment, we first ex-
press these results in terms of the peribdConsider the
ratio a/R. Using Eq.(23), R=(3V/4m)¥? and Eq.(9) to
eliminate the volumé/ we obtain

(39

1/2 1/3

16m°m

3yPA?

YK

v

—1/6

a
R (40)

Using Eqs(38), (40), and(9) in Eq. (39) we find thatr,, can
be expressed in the form

BT7/6
1T @
HereB andC are constantsindependent of):
12 2\ 13
T 3yPA
Bz;(_ 3yPA® @2
6m(y—1)\ vk 16m3m
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and are small compared to the wavelength of sound for the fre-
quencies use(.5—-8 H32. Our results indicate that the nature

of these oscillations depends on both the frequency and the
C=(2B,/m)B. (43)  amplitude of the oscillation. Above about 2 Hz the oscilla-

tions are intermediate, to within the accuracy of our measure-

. . . ments. For frequencies below 2 Hz the oscillations are ob-
Equation(37) and Eqs(40)-(43) are the main results of this goryeq to undergo several changes as their amplitude

section: they provide an estimate for the effects of Conducaecreases due to damping. There(ilsan initial adiabatic

tion on the bulk modulus and the relaxation time. Mot : -
. ) . 7 _ oscillation (lasting roughly one cyc)e followed by (ii) a
_Using the data given earlier and~2x10"° m*s™* for transition(lasting one or two cyclego intermediate oscilla-
air at 18 T, Eq. (40) yields tions which persist for several cycles, urgtil) the amplitude
has decreased to a few mm when there is a second, larger,
a transition (lasting two or three cyclesto (iv) isothermal
—~2.4x1072T" V6 (44) oscillations which persist until the oscillations cease. In this
R second transition the damping is observed to increase. Some
of these features are strongly reminiscent of Stokes’ analysis
[3] (see Sec.)lof changes between adiabatic and isothermal
oscillations in gases, and perhaps one may think of the fre-

<1/6 = 1/6 1
gg.r:baa?gugolf ﬁwo dtol 1.4'ns E. ;%U.S tr;e Cgr-ergg?; tolt(;e quency below which isothermal oscillations are observed in
: ic bu ulus in Ed( IS approxi Y 270 34 confined gas as the “Stokes limit.”

compared with a measured difference of about 2.5%, see We have also presented an approximate model for the
Table I. Next, we consider the relaxation time. We first com-_¢. +< of heat conduction on the bulk modulus and the re-

For our experimentl ~Y® is nearly unity: it varies slowly

Fig. 7, where the solid curve is a plot of E@2) with B
=12 s Y6 andC=2.2 s % The value ofB computed from
Eq. (42) is about 30% lower than thi8~8 s 6. We are
unable to compare the value 6fwith Eq. (43) because the
value of By is unknown. It is interesting to note that the = Note added in proofMeasurements of the initial ampli-
departure from an approximately linear relationship betweeiude of the isothermal tail as a function of the volume of gas
rm and T in Fig. 7 is a manifestation of the friction in the Show that this amplitude increases as the volume increases.
tube.[If this friction is negligible, then3,, and henc&€=0,  We have succeeded in improving the quality of the isother-
and Eq.(41) becomesr,~BT"%] mal tail sufficiently that accurate measurements of the relax-
Finally, we return to the question of whether the oscilla-ation time in the tail can be performed. These measurements

tions at frequencies above about 2 Hz are adiabatic or inte®ill be presented elsewhere.
mediate. These are oscillations such as those in Fig. 2 for
which there is no significant variation in period with decreas-

ing amplitude(see Fig. 5. Here it is difficult to distinguish We acknowledge financial support received from the

between adiabatic and intermediate oscillations from meaggyih African Foundation for Research and Development,

surements of the period alorisee Figs. 6 and 8, where the 514 technical assistance from Guy Dewar, Johnny Wilsen-
adiabatic and intermediate lines approach each other agn and Karl Penzhorn.

T—0). A more sensitive test is provided by the measure-

agreement with the measured values but they underestimate
the effect of conduction on the bulk modulus and overesti-
mate its effect on the dissipation.
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ments ofr,,,. The fact that these values agree with Etfl) APPENDIX

asT—0 (see Fig. 7 means that the corresponding oscilla- o ]

tions are intermediate: for adiabatic oscillatighs=0 in Eq. Specification and parameters for the electrical and me-
(39) and 7=m/28, is independent oT . chanical components in Fig. 1 are listed below:

The above model applies to the intermediate oscillations ©OScillator: Philips PM5141.
with constant period. We have not attempted a theoretical Digital Oscilloscope: Philips PM3350A.
description of the transition regions, such as | and Il in Fig. Phase-sensitive Detector: PAR Model 5101.
5, where the period is changing. One may speculate that the XY Plotter: HP Model 2DR2M. _
transition | from an adiabatic oscillation is associated with a  Coils L1 and L.2: Each 100 turns. Resistance @.8In-
transient during which the nonuniform temperature distripy-ductance L¥L2=256 uH.
tion 6 in Eq. (16) is established. The reason for the large Mean diameter24 mm. Height=14 mm.

transition 11l to an isothermal mode, which occurs when the Coil L3: 800 turns. Resistance 16.2. Inductance
amplitude is sufficiently small, is not clear. L3=39.3 mH. Mean diameter 125 mm. Height 11 mm.

Separation of L1 and L2216 cm.

CapacitorsC= 100 nF(nomina).

Glass tube and steel ball acquired from Leybold Didactic
We have used a modification of Bardt’s experimentto GMBH (Catalogue number 37105 Tube diametes

study oscillations in air confined to a finite volume at room 16.0025 mm. Mass of bai16.5 g.

temperature and pressure. The dimensions of the container Schott Glass Aspirator: 20 (nomina).

V. DISCUSSION
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